Research departments

Research department 1

Development of approaches and methods of physical chemistry for studying multicomponent supramolecular, molecular and ion-molecular systems as materials of the future

Head of the department: 
Scope of research: 

- Gaining new knowledge about the physicochemical processes of formation of solution structure when predicting the behavior of liquid phase and fluid systems in response to external influences.

- Developing the theory of solutions and simulation approaches to describing liquid phase systems based on using computational chemistry methods and experimental studies of a variety of properties of multicomponent systems within a wide range of parameters of states including supercritical conditions.

- Establishing the regularities in the effect of the structure of compounds on their thermodynamic properties in multicomponent solutions to better study the mechanism of intermolecular interactions.

- Identifying the role of solvophobic effects on the physicochemical parameters of liquid phase systems within a wide range of pressure and temperature values. - Structural analysis of liquid phase and fluid systems based on modern methods of structural chemistry.

- Studying the effect of the composition of composite proton-conducting membranes based on polymers dopes with ionic liquids on their electrochemical and physicochemical properties.

- Based on dipyrromethene dyes obtaining new luminescent sensors, nanostructured biocompatible systems of delivery of biomarkers, photosensitizers, mono-/multilayer components of OLED devices with photoinduced electron transfer.

- Studying the interactions of biopolymers with macroheterocyclic compounds for medical purposes. - Finding regularities in interactions of macroheterocyclic and heteroaromatic compounds with biopolymers, establishing the effect of the nature of ligands on the strength of their binding with the polymer, ligand localization in the polymer in order to develop transport systems, sensors based on macroheterocyclic compounds and photothermosensitive polymer complexes based on polymers and heteroaromatic compounds.

- Synthesis of iron-containing dendrimer complexes based on spin equilibrium systems.

Key words: 
Supramolecular systems
Photoactive compounds
Polymorphism
Solvation
Supercritical fluids
Delivery systems
Machine learning
Cooperation: 

- Leipzig University (Germany);

- University of Coimbra (Portugal);

- University of Lille (Lille, France);

- Tianjin University (China);

- New York University Shanghai (China);

- Kazan Federal University (Kazan);

- Kazan State Medical University (Kazan);

- Zavoisky Physical Technical Institute (Kazan);

- Saint Petersburg State University (Saint Petersburg);

- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (Moscow);

- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences (Moscow);

- Lobachevsky State University of Nizhny Novgorod (Nizhny Novgorod);

- Privolzhsky Research Medical University (Nizhny Novgorod);

- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences (Ekaterinburg);

- Ivanovo State University of Chemistry and Technology (Ivanovo);

- Nanomaterials Research Institute of Ivanovo State University (Ivanovo);

- Ivanovo State University (Ivanovo).

Publications: 

1. Barannikov V.P., Smirnov V.I., Kurbatova M.S. The thermochemical behavior of glycyl-L-histidine and β-alanyl-L-histidine peptides in (SDS + phosphate-buffered saline) micellar solution at pH = 7.4 // Journal of Molecular Liquids. – 2021. – V.331. – P. 115766. https://doi.org/10.1016/j.molliq.2021.115766

2. Khodov I.A. et al. Exploring the Conformational Equilibrium of Mefenamic Acid Released from Silica Aerogels via NMR Analysis // International Journal of Molecular Sciences. – 2023. – V.24. – P. 6882. https://doi.org/10.3390/ijms24086882

3. Oparin R.D. et al. Polymorphism and conformations of mefenamic acid in supercritical carbon dioxide // The Journal of Supercritical Fluids, – 2019. – V.152. – P. 104547. https://doi.org/10.1016/j.supflu.2019.104547

4. Bumagina N. A. et al. Basic structural modifications for improving the practical properties of BODIPY // Coordination Chemistry Reviews. – 2022. V. 469. P. 214684. https://doi.org/10.1016/j.ccr.2022.214684

5. Lebedeva N.S. et al. Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2 // Scientific reports. – 2021. – V.11. – No 1. – P. 19481. https://doi.org/10.1038/s41598-021-99072-8

6. Gruzdev M. S., Chervonova U. V., Vorobeva V. E., Kolker A. M. Highly branched mesomorphic iron(III) complexes with a long alkyl fragments on periphery // Journal of Molecular Liquids. – 2020. – V. 320. – P. 114505. https://doi.org/10.1016/j.molliq.2020.114505

7. Shmukler L.E., Fedorova I.V., Fadeeva Yu. A., Safonova L.P. The physicochemical properties and structure of alkylammonium protic ionic liquids of RnH4-nNX (n = 1 – 3) family. A mini–review // Journal of Molecular Liquids. – 2021. – V. 321. – P. 114350. https://doi.org/10.1016/j.molliq.2020.114350

8. Ramenskaya L.M, Grishina E.P, Kudryakova N.O. Comparative study of atmospheric ionic liquids based on bis(trifluoromethylsulfonyl)imide anion and alkyl substituted cations of ammonium, pyrrolidinium and imidazolium // Journal of Molecular Liquids, – 2020. – V. 312. – P. 113368. V. 312, 113368. http://dx.doi.org/10.1016/j.molliq.2020.113368

9. Andrey V. Kustov et al. Monocationic Chlorin as a Promising Photosensitizer for Antitumor and Antimicrobial Photodynamic Therapy // Pharmaceutics – 2023. – V. 15. – P. 61. https://www.mdpi.com/1999-4923/15/1/61

10. Ksenofontov A.A et al. Accurate prediction of 11B NMR chemical shift of BODIPYs via machine learning // Physical Chemistry Chemical Physics. – 2023. – V.25. – P. 9472. https://pubs.rsc.org/en/content/articlehtml/2023/cp/d3cp00253e

Head of the laboratory: Safonova Lyubov Petrovna
Head of the laboratory: Kolker Arkadiy Mikhailovich
Head of the laboratory: Kustov Andrey Vladimirovich
Head of the laboratory: Kvashnin Aleksandr Gennadyevich
Head of the laboratory: Barannikov Vladimir Petrovich
Head of the laboratory: Khodov Ilya Anatolyevich

Research department 2

Chemistry and practical application of macrocyclic compounds

Scope of research: 

The aim of the studies consists in developing novel approaches to synthesis, investigation of the interconnections between the structure and properties of macroheterocyclic compounds of different nature (porphyrins and their analogues, calyx[n]pyrroles, calyx[n]arenes, etc.) as the basis for designing new substances and materials with a tailor-made architecture and practically relevant functional (redox, acid base, spectral-luminescent, sensor, receptor, light conversion, photosensitizing, antibacterial and other) properties.

Key words: 
Molecular recognition
Porphyrins
Photoinduced electron transfer
Photosensitizer
Cooperation: 

- Leibnitz Institute of Photonic Technology (Jena, Germany);

- Catholic University of Leuven (Leuven, Belgium);

- B.I. Stepanov Institute of Physics of the National Academy of Sciences (Minsk, Belarus);

- Institute of Physical and Organic Chemistry of the Southern Federal University (Rostov-on-Don, Russia);

- University of Turin (Turin, Italy);

- Semenov Research Center of Chemical Physics (Moscow, Russia);

- Privolzhsky Research Medical University (Nizhny Novgorod, Russia).

Publications: 

1. Koifman O.I. et al. Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices // Macroheterocycles. - 2020. – V.13. – P. 311-467. DOI: 10.6060/mhc200814k.

2. Likhonina A.E., Mamardashvili G.M., Khodov I.A., Mamardashvili N.Z. Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine // Polymers. – 2023. – V. 15(4). – Art. 1055. DOI: 10.3390/polym15041055.

3. Bichan N.G., Tsaturyan A.A., Ovchenkova E.N., Kudryakova N.O., Gostev F.E., Shelaev I.V., Aybush A.V., Nadtochenko V.A., Lomova T. N. Donor–acceptor interac-tions of gold(III) porphy-rins with cobalt(II) phthal-ocyanine: chemical struc-ture of products, their spec-tral characterization and DFT study // Dalton Trans. – 2022. - V. 51. – Art. 9072. DOI: 10.1039/D2DT01182D.

4. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A., Mozgova V.A., Gruzdev M.S., Chervonova U.V., Shelaev I.V., Lomova T.N. Meso-carbazole substituted porphyrin complexes: synthesis and spectral properties according to experiment, DFT calculations and the prediction by machine learning methods // Dyes and Pigments. – 2022. – V. 204. – Art. 110470. DOI: 10.1134/S0036023622030147.

5. Mamardashvili G.M., Kaigorodova E. Yu., Lebedev I.S., Mamardashvili N.Z. Axial complexes of Sn (IV)-tetra (4-sulfophenyl) porphyrin with azorubine in aqueous media: fluorescent probes of local viscosity and pH indicators // Journal of Molecular Liquids. – 2022. – P. 366. – Art. 120277. DOI: 10.1016/j.molliq.2022.120277.

6. Rusanov A.I., Dmitrieva O.A., Mamardashvil N.Zh., Tetko I.V. More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins // International Journal of Molecular Sciences. – 2022. - V. 23. – Art. 1201. DOI: 10.3390/ijms23031201.

7. Lomova T.N. Recent progress in organometallic porphyrin-based molecular materials for optical sensing, light conversion, and magnetic cooling // Applied Organometallic Chemistry. – 2021. V. 35. – Art. e6254. DOI: 10.1002/aoc.6254.

8. Kiselev A.N., Zaitseva S.V., Zdanovich S.A., Shagalov E.V., Aleksandriysky V.V., Syrbu S.A., Koifman O.I. Direct Cobalt-Catalyzed Phosphorylation of Porphyrins // ChemistrySelect. – 2021. – V. 6 (43). – Art. 12188. DOI: 10.1002/slct.202102728.

9. Sheinin V.B., Kulikova O.M.  pH-controlled solubilization of photosensitizer tetraphenylporphyrin // Dyes and Pigments. – 2021. – P. 194. – Art. 109589. DOI: 10.1016/j.dyepig.2021.109589.

10. Tesakova M.V., Kuzmin S.M., Parfenyuk V.I. Electrodeposition of films of individual 5,10,15,20-tetrakis(3-aminophenyl)porphyrin metal complexes and their composite for electrocatalytic oxygen reduction // Inorganic Chemistry Communications. – 2022. - P.135. – Art.109106. DOI: 10.1016/j.inoche.2021.109106.

Head of the laboratory: Mamardashvili Nugzar Zhoraevich
Head of the laboratory: Syrbu Sergey Aleksandrovich
Head of the laboratory: Lomova Tatyana Nikolaevna

Research department 3

Scientific and engineering bases of obtaining functional materials and nanocomposites

Head of the department: 
Scope of research: 

The aim of the studies is to develop new approaches to liquid phase synthesis of advanced functional materials based on natural and synthetic polymers and composites with nanoparticles and bioactive molecules as innovative industrially important materials.

Details:

- Developing new methods of obtaining composites based on polysaccharides and nanocrystalline cellulose with antimicrobic activity against Gram negative and Gram positive bacteria;

- Studying the effect of nanocrystalline cellulose as a composite component on calcium carbonate mineralization accompanied by the formation of various polymorphs for modelling biomineralization in polymer scaffolds applied in tissue engineering and regenerative medicine.

- Developing methods of modification of natural and synthetic polymers, including multicomponent compositions based on thermodynamic and structural studies of their solutions.

- Studying the effect of natural and synthetic polymers on the physicochemical properties of biologically active compounds.

- Developing methods of obtaining meso- and microporous nanostructured materials, porous carbon metal-containing composites, as well as magnetic adsorbents, photoactive materials, films, coatings, and membranes.

- Developing the scientific basis of plasma-chemical synthesis of hybrid nanomaterials based on polymers containing metal oxides and studying their adsorption, catalytic and bactericidal properties.

- Developing novel types of electrorheological gels and elastomers;

- Obtaining novel hybrid materials based on graphene, magnetic nanoparticles and molecular magnetics producing a strong magnetocaloric effect.

Key words: 
Biodegradable films
Silica hydrogels
Metal-organic frameworks
Plasma
Polymer composite
Ultrafiltration membranes
Delivery systems
Polymer gels
Host-guest complexes
Polymers and surfactants for pharmaceutical use
Natural, modified and polymeric cyclodextrins
Cooperation: 

- Ivanovo State University;

- Ufa Institute of Chemistry of Ufa Federal Research Centre of the Russian Academy of Sciences;

- Moscow Pedagogical State University;

- A.V.Topchiev Institute of Petrochemical Synthesis, RAS (Moscow);

- Mechanical Engineering Research Institute of the Russian Academy of Sciences (Moscow);

- All-Russian Research Institute of Starch and Processing of Starch-Containing Raw Materials (Moscow);

- A.N.Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (Moscow);

- Saint Petersburg State University;

- Kazan (Volga Region) Federal University;

- University of Palermo, Italy;

- South-Central Minzu University,Wuhan, China;

- Ivanovo University of Chemistry and Technology, Russia;

- Ivanovo State Power Engineering University, Russia;

- V.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Russia.

Publications: 

1. Ivanov K.V., Noskov A.V., Alekseeva O.V., Agafonov A.V. Synthesis of CaCu3Ti4O12: How Heat Treatment Influences Morphology and Dielectric Properties // RUSSIAN JOURNAL OF INORGANIC CHEMISTRY. – 2021. – Vol. 66. - No. 4. – P. 490-495. DOI: 10.1134/S0036023621300021.

2. Alekseeva O.V., Shibaeva V.D., Noskov A.V. Enhancing the thermal stability of ionogels: Synthesis and properties of triple ionic liquid/halloysite/mcc ionogels / [et al.] // MOLECULES. – 2021. – Vol. 26. - No. 20. DOI: 10.3390/molecules26206198.

3. Sirotkin N.A., Khlyustova A.V., Titov V.A., Agafonov A.V. The Use of a Novel Three-Electrode Impulse Underwater Discharge for the Synthesis of W-Mo Mixed Oxide Nanocomposites // Plasma Chemistry and Plasma Processing. – 2021. – V. 42. – P. 191–209. DOI: 10.1007/s11090-021-10213-3.

4. Alekseeva O.V., Noskov A.V., Titov V.A.  Adsorption performance of the polystyrene/montmorillonite composites: Effect of plasma treatment  // THE SCIENCE OF THE TOTAL ENVIRONMENT . – 2021. – Vol. 167. – P. 108505. DOI: 10.1016/j.cep.2021.108505.

5. Agafonov A.V., Grishina E.P., Kudryakova N.O.  Ionogels: Squeeze flow rheology and ionic conductivity of quasi-solidified nanostructured hybrid materials containing ionic liquids immobilized on halloysite // ARABIAN JOURNAL OF CHEMISTRY. – 2022. – Vol. 15. - No. 1. – P. 103470. DOI: 10.1016/j.arabjc.2021.103470.

6. Khlyustova A., Sirotkin N., Titov V., Agafonov A.  One-Pot Underwater Plasma Synthesis and Characterization of Fe- and Ni-Doped Boehmite // Crystal Research & Technology. – 2022. – Vol. 57. - No. 2. – P. 2100117. DOI: 10.1002/crat.202100117.

7. Алексеева О.В, Шипко М.Н., Смирнова Д.Н. и др. Модификация поверхности и физико-химических свойств алюмосиликатных нанотрубок галлуазита наночастицами магнетита // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2022. – № 3. – С. 23-30. DOI: 10.31857/S1028096022030025

8. Агафонов А.В., Сироткин Н. А., Титов В.А., Хлюстова А.В. Подводная низкотемпературная плазма как инструмент синтеза неорганических наноматериалов // Журнал неорганической химии. – 2022. – Т. 67. - № 3. – С. 271-280. DOI: 10.31857/S0044457X22030023.

9. Kochkina N., Nikitina M., Agafonov M., Delyagina E., Terekhova I. iota-Carrageenan hydrogels for methotrexate delivery // Journal of Molecular Liquids. - 2022. – Vol.  368. – P. 120790. DOI:10.1016/j.molliq.2022.120790.

10. Delyagina E., Garibyan A., Agafonov M., Terekhova I. Regularities of encapsulation of tolfenamic acid and some other non-steroidal anti-inflammatory drugs in metal organic frameworks on the basis of γ-cyclodextrin // Pharmaceutics. -  2023. V. 15(1). – P. 71. DOI: 10.3390/pharmaceutics15010071

Research department 4

Chemistry and technology of obtaining fibrous and polymer materials with desired functional properties through modification of cellulose and synthetic fibers, polysaccharides and plant raw materials

Head of the department: 
Scope of research: 

- Studying structural, phase and chemical processes in polysaccharide solutions and hydrogels induced by acoustic effects;

- Theoretical and experimental substantiation of synthesis technologies of mono- and biocomponent silver and copper nanoparticles ensuring high biological activity of metal polymer composites based on cellulose and synthetic fibers;

- Studying surface and volume modifications of synthetic fibrous materials;

- Developing the theory of obtaining biologically modified composite materials based on biopolymers from bast-fiber and medicinal plant raw materials.

Key words: 
Starch
Nanoparticle
Plant raw materials
Synthetic fibers
Chitosan
Cellulose fibers
Cooperation: 

With educational and research institutions

- Ivanovo State University of Chemistry and Technology (Ivanovo);

- Ivanovo State Medical Academy;

- National University of Oil and Gas (Moscow);

- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;

- Ivanovo State Polytechnic University (Ivanovo);

Business cooperation

- OOO "INTEKH LV" (Ivanovo);

- OOO "Geoproekt" (Ivanovo);

- OOO "Smart-Textile" (Shuya, Ivanovo region);

- OAO "Zavidovo Felt Factory" (Tver region);

- kazan National Research Technological University (Kazan);

- OOO "Apoteks" (Ivanovo);

- OOO "TD Ivanovo-Brezent" (Ivanovo);

- OOO "Kletochnye sistemy" (Moscow);

- OOO "Koleteks" (Moscow).

Publications: 

1. Lipatova I.M., Yusova  A.A., Makarova L.I., Functional films based on mechanoactivated starch with prolonged release of preservative //Food Bioscience. - 2022. – V.47. – Art. 101694. DOI: 10.1016/j.fbio.2022.101694.

2. Lipatova I.M., Yusova A.A., Makarova L.I. Fabrication and characterization of starch films containing chitosan nanoparticles using in situ precipitation and mechanoactivation techniques // Journal of Food Engineering. - 2021. - V.304. - P. 1-10. DOI: 10.1016/j.jfoodeng.2021.110593.

3. Prorokova N.P., Kumeeva T.Yu., Kholodkov I.V. Wear-Resistant Hydrophobic Coatings from Low Molecular Weight Polytetrafluoroethylene Formed on a Polyester Fabric // Coatings. – 2022. – V.12. – Art. 1334. DOI: 10.3390/coatings12091334.

4. Prorokova N. Special Issue “Coatings Imparting Multifunctional Properties to Materials” // Coatings. – 2021. – V. 11(11). – Art. 1362. DOI: 10.3390/coatings1111 1362.

5. Koksharov S.A., Bikbulatova A.A., Kornilova N.L., Aleeva S.V., Lepilova O.V., Nikiforova E.N. Justification of an approach to cellulase application in enzymatic softening of linen fabrics and clothing // Textile Research journal. - 2022. - V. 92. - P. 4208-4229. DOI: 10.1177/00405175221101018.

6. Kornilova N., Bikbulatova A., Koksharov S., Aleeva S., Radchenko O., Nikiforova E. Multifunctional polymer coatings of fusible interlinings for sewing products // Coatings. – 2021. – V. 11. - N. 6. – P. 1–22. DOI: 10.3390/coatings11060616.

7. Koksharov S.A., Aleeva S.V, Lepilova O.V. Description of adsorption interactions of lead ions with functional groups of pectin-containing substances // Journal of Molecular Liquids. – 2019. – V. 283. – P. 606-616. DOI: 10.1016/j.molliq.2019.03.109.

8. Dymnikova N.S., Erokhina E.V., Moryganov A.P. Silver Nanoparticles: Dependence of the Antimicrobial Activity on the Synthesis Conditions // Russian Journal of General Chemistry. - 2021. - V. 91. - N. 3. - P. 564-570. DOI: 10.1134/S1070363221030270.

9. Дымникова Н.С., Ерохина Е.В., Морыганов А.П., Кузнецов О.Ю., Королев С.В. Ресурсосберегающие технологии получения текстильных материалов и изделий с пролонгированными антимикробными свойствами // Известия ВУЗов Технология текстильной промышленности. - 2020. - №6. - С. 122-127. ELIBRARY ID: 44824002.

10. Морыганов А.П., Дымникова Н.С., Киселев М.Г., Кокшаров С.А., Данилов А.Р., Трещалин Ю.М. Технико-экономическое обоснование создания центра глубокой переработки лубяных волокон и сопутствующих компонентов растительного сырья для производства широкого спектра высокорентабельной инновационной продукции // Известия ВУЗов Технология текстильной промышленности. - 2022. - №1. - С. 69-73. DOI: 10.47367/0021-3497.

11. Морыганов А.П., Дымникова Н.С., Коломейцева Э.А. Инновационные импортозамещающие препараты для придания огне-, био- и термостойкости текстильным и полимерным материалам // Сборник трудов III Международной научно-технической конференции «Новые материалы и технологии глубокой переработки сырья – основа инновационного развития экономики России». М., ВИАМ - июнь 2022. - с.662-672.

12. Арктическое материаловедение: состояние и развитие / Под ред. В.М. Бузника, Е.Н. Каблова, С.М. Алдошина. – М.: Издательский центр РГУ нефти и газа (НИУ) им. И.М. Губкина, 2021. - 414 с. (раздел 8.21. Материалы для арктической одежды - Пророкова Н.П. С.338-346). ISBN: 978-5-91961-414-2.

Research department 5

Development of novel pharmaceutical forms of drug compounds and materials for biomedical use

Head of the department: 
Scope of research: 

Transition to personalized medicine, high-tech health care and health protection technologies, including those based on rational administration of drug compounds, is impossible without developing materials for medical use and new generation drugs. The research community and pharmaceutical industry have recently paid a lot of attention to developing bioavailable preparations. A literature analysis shows that about 40% of commercial substances and 80% of compounds being developed now by pharmaceutical companies are poorly soluble in aqueous media. This fact considerably lowers the therapeutic effectiveness of drug compounds and causes side effects. The solubility and permeability parameters can be improved by applying conceptually new approaches based on fine-tuning of physicochemical properties of multicomponent molecular crystals (cocrystals). The economic effect of such pharmaceutical systems is comparable with launching a new drug on the market. Besides, the innovative technologies we are working at can increase the lifetime of generic compounds on the market as the compounds acquire better functional properties and a new brand name. The research department's studies concern the properties of individual active pharmaceutical ingredients (drug compounds / lead compounds) in biological media and crystals. We are also designing pharmaceutical systems for targeted delivery of drug molecules to their sites of action.

Key words: 
Biopolymers
Drug compounds
Membrane permeability
Pluronics
Polymorphism
Distribution
Solubility
Delivery systems
Cocrystals
Sublimation
Cyclodextrins
Cooperation: 

- South-West University "Neofit Rilski" (Blagoevgrad, Bulgaria);

- Indian Institute of Chemical Technology (IICT) (Hyderabad, India);

- Sat-sun Yen University (Guangzhou, China);

- Tianjin University of Technology (China);

- Beijing Institute of Technology (China);

- Shanghai Institute of Materia Medica, Chinese Academy of Sciences (Shanghai, China);

- University of Cape Town, Department of Chemistry, Center of Supramolecular Chemistry (Cape Town, Republic of South Africa);

- Institute of Pharmaceutics, University of Tromsø, (Norway);

- Institute of Chemical Sciences, University of Bologna (Italy);

- Biomedical Research Center (Borstel, Germany);

- Federal Institute for Materials Research and Testing (Berlin, Germany);

- Institute of Pharmaceutics, University of Helsinki (Finland);

- Pharmaceutical and Analytical R&D, AstraZeneca R&D (Molndal, Sweden);

- Institute of Pharmaceutics, University of Glasgow (Scotland);

- Institute of Physics and Chemistry, University of Southern Denmark (Odense, Denmark);

- Institute of Physiologically Active Substances, RAS (Chernogolovka);

- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS (Chernogolovka);

- Institute of General and Inorganic Chemistry, RAS (Moscow).

Publications: 

1. Perlovich G.L. Thermodynamic characteristics of cocrystal formation and melting points for rational design of pharmaceutical two-component systems // CrystEngComm. – 2015. – V. 17. – P. 7019 – 7028. DOI: 10.1039/c5ce00992h

2. Perlovich G.L. Prediction of solubility of two-component molecular crystals // CrystEngComm. - 2022. – V. 24. – Art. 2217 DOI: 10.1039/d2ce00105e

3. Surov A.O., Voronin A.P., Drozd K.V., Gruzdev M.S., Perlovich G.L., Prashanth J., Balasubramanian S. Polymorphic forms of antiandrogenic drug nilutamide: structural and thermodynamic aspects // Phys. Chem. Chem. Phys. -  2021. – V. 23(16). – P. 9695-9708. DOI: 10.1039/d1cp00793a.

4. Surov A.O., Churakov A.V., Perlovich G.L. Three Polymorphic Forms of Ciprofloxacin Maleate: Formation Pathways, Crystal Structures, Calculations and Thermodynamic Stability Aspects // Cryst. Growth Des. – 2016. – V. 16(11). – P. 6556-6567. DOI: 10.1021/acs.cgd.6b01277

5. Volkova T.V., Simonova O.R., Perlovich G.L. Another move towards bicalutamide dissolution and permeability improvement with acetylated beta-cyclodextrin solid dispersion // Pharmaceutics. – 2022. - V. 14(7). – Art. 1472. DOI: 10.3390/pharmaceutics14071472

6. Volkova T.V., Simonova O.R., Perlovich G.L. Permeability of diverse drugs through a lipid barrier: impact of pH and cyclodextrin // Journal of Molecular Liquids. – 2022. – V. 357(9). – Art. 115931. DOI: 10.1016/j.molliq.2022.11913

7. Blokhina S.V., Sharapova A.V., Ol’khovich M.V., Volkova T.V., Perlovich G.L., Solubility, lipophilicity and membrane permeability of some fluoroquinolone antimicrobials // Eur. J. Pharm. Sci. – 2016. – V. 105. – P. 29-37. DOI: 10.1016/j.ejps.2016.07.01

8. Blokhina S.V., Ol'khovich M.V., Sharapova A.V., Levshin I.B., Perlovich G.L. Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines // J. Mol. Liq. – 2021. – Art. 114662. DOI: 10.1016/j.molliq.2020.114662.

9. Drozd, K.V., Manin A.N., Voronin A.P., Boycov D.E., Churakov A.V., Perlovich G.L. A combined experimental and theoretical study of miconazole salts and cocrystals: crystal structures, DFT computations, formation thermodynamics and solubility improvement // Phys. Chem. Chem. Phys. -  2021. - V. 23(21). – P.12456-12470. DOI: 10.1039/D1CP00956G

10. Drozd K.V., Manin A.N., Churakov A.V., Perlovich G.L. Novel Drug-Drug Cocrystal of Carbamazepine with para-Aminosalicylic Acid: Screening, Crystal Structure and Comparative Study of Carbamazepine Cocrystals Formation Thermodynamics // CrystEngComm. -  2017. - V. 19. – P. 4273-4286. DOI: 10.1039/C7CE00831G

Research department 6

Multiscale simulation of molecular liquids and solutions

Head of the department: 
Scope of research: 

Today computer simulation methods (molecular dynamics simulation, Monte Carlo quantum chemistry), theoretical methods (self-consistent field theory, field-theoretic approaches, classical density functional theory and integral equation theory), as well as deep machine learning techniques have turned into powerful tools for studying molecular liquids and solutions along with experimental approaches. These methods are normally applied to describe thermodynamic, mechanical, rheological and transport properties of molecular systems in bulk and in confinement and to predict new materials by neural network processing of big physicochemical data.

The Department's research is aimed at application and development of the modern methods of computer simulation of molecular liquids and solutions in bulk and at the interphase boundary based on achievements of modern theoretical physics and applied mathematics, first and foremost on the methods of statistical physics of molecular liquids and solutions (classical density functional theory, self-consistent field theory, integral equation theory), molecular dynamics, quantum chemistry and deep machine learning.

Key words: 
Integral equations
Deep machine learning techniques
Classical molecular dynamics and quantum chemistry methods
Statistical physics
Classical density functional theory
Self-consistent field theory
Cooperation: 

- University of Regensburg (Germany);

- Institut für Nichtklassische Chemie (Leipzig, Germany);

- Federal University of Rio de Janeiro (Brazil);

- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;

- Landau Institute for Theoretical Physics (Chernogolovka);

- National Research University "Higher School of Economics".

Publications: 

1. Budkov Y., Kolesnikov A., Goodwin Z., Kiselev M., Kornyshev A. Theory of electrosorption of water from ionic liquids // Electrochimica Acta. - 2018. - V. 284. - P. 346-354. DOI: 10.1016/j.electacta.2018.07.139.

2. Budkov Y., Kalikin N. Macroscopic forces in inhomogeneous polyelectrolyte solutions // Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. - 2023. - V. 107. – Art. 024503. DOI: 10.1103/PhysRevE.107.024503.

3. Gurina D.L., Odintsova E.G., Kolesnikov A., Budkov Y.A., Kiselev M.G. Disjoining pressure of room temperature ionic liquid in charged slit carbon nanopore: Molecular dynamics study // Journal of Molecular Liquids . - 2022. - V. 366. - Art. 120307. DOI: 10.1016/j.molliq.2022.120307.

4. Makarov D.M., Fadeeva Y.A., Shmukler L.E., Tetko I.V. Machine learning models for phase transition and decomposition temperature of ionic liquids // Journal of Molecular Liquids. - 2022. - V. 366. – Art. 120247. DOI: 10.1016/j.molliq.2022.120247.

5. Budkov Y.A, Kolesnikov A.L. Electric double layer theory for room temperature ionic liquids on charged electrodes: Milestones and prospects // Current Opinion in Electrochemistry. - 2022. - V. 33. - Art. 100931. DOI: 10.1016/j.coelec.2021.100931.

6. Odintsova E.G., Petrenko V.E., Kolker A.M., Borovkov N.Y. Molecular origin of structural defects in the zinc phthalocyanine film // Physical Chemistry Chemical Physics. - 2022. - V. 24. - P. 19956-19964. DOI: 10.1039/D2CP01221A.

7. Budkov Y.A., Kalikin N.N., Kolesnikov A.L. Electrochemistry meets polymer physics: polymerized ionic liquids on an electrified electrode // Physical Chemistry Chemical Physics. - 2022. - V. 24. - P.1355-1366. DOI: 10.1039/D1CP04221A.

8. Antipova M.L., Petrenko V.E., Odintsova E.G., Bogdan T.V. Study of solvation of substituted propylbenzene in ethanol-water solutions under subcritical conditions by molecular dynamics // The Journal of Supercritical Fluids. - 2020. - V. 155. - P. 104649(1-7). DOI: 10.1016/j.supflu.2019.104649

9. Kruchinin S.E., Kislinskaya E.E., Chuev G.N., Fedotova M.V. Protein 3D-hydration: A case of bovine pancreatic trypsin inhibitor // The International Journal of Molecular Sciences. - 2022. - Vol. 23(23). - Art. 14785. DOI: 10.3390/ijms232314785.

10. Valiev M., Chuev G.N., Fedotova M.V., CDFTPY: A python package for performing classical density functional theory calculations for molecular liquids // Computer Physics Communications. – 2022. - V. 276. - Art. 108338. DOI: 10.1016/j.cpc.2022.108338.